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Choice Models

πi(k|K) = F (τk+1 + φi(θ)) − F (τk + φi(θ))

We have n actors (i=1,...,n) confronted with m (j=1,...,m) 
choice sets. To summarize 150 years of  accumulated 
wisdom (or at least practice): for unordered alternatives 

and for ordered ones use a cdf F and assume

πi(k|K) =
exp(φ(xi, zk))

∑
!∈K

exp(φ(xi, z!))

Deviance

D = −2
n∑

i=1

m∑

j=1

∑

k∈Kj

yijk log πi(k|Kj)

where the data are binary (indicators, dummies) and 
satisfy, for all i and j,

We want to minimize

∑

k∈Kj

yijk = 1

Algorithms
So far, many ad hoc techniques have been proposed 
to compute maximum likelihood estimates for 
various specific models. Some work well, some don’t.

Our purpose in this presentation is to present a 
general approach based on quadratic majorization. This 
class of algorithms has the desirable property that it 
computes maximum likelihood estimates by solving  
a sequence of least squares problems, which are 
generally much simpler. It also produces an algorithm
which is globally convergent.



Majorization
The problem we want to solve

Now suppose there is a majorization function             
such that

ψ(θ, ξ)

min
θ∈Θ

φ(θ)

φ(θ) ≤ ψ(θ, ξ) ∀θ, ξ ∈ Θ

φ(θ) = ψ(θ, θ) ∀θ ∈ Θ

Finding a suitable majorization function is part 
tricks, part art (like integration).

Define the algorithm

θ(k+1) = argmin
θ

ψ(θ, θ(k))

Then (sandwich inequality)

φ(θ(k+1)) ≤ ψ(θ(k+1), θ(k)) ≤ ψ(θ(k), θ(k)) = φ(θ(k))

Thus minimizing the majorization function decreases 
the objective function. Under some additional 
conditions, this guarantees convergence of the 
algorithm to a local minimum.

Figure 1: Majorization

1

Quadratic Majorization

φ(θ) ≤ φ(ξ) + (θ − ξ)′Dφ(ξ) +
1

2
(θ − ξ)′H(θ − ξ)

In this presentation we are interested in the case where we
can find a matrix H such that

Then

which provides a majorization function quadratic in    .
Completing the square gives

D2φ(θ) ≤ H ∀θ ∈ Θ

φ(θ) ≤ φ(ξ) −
1

2
θ̃′H θ̃ +

1

2
(θ − θ̃)′H(θ − θ̃)

θ

with θ̃ = ξ − H−1
Dφ(ξ)



Probit Majorization

Theorem:  Suppose                                      and−∞ ≤ α < β ≤ +∞

f(x) = − log[Φ(β + x) − Φ(α + x)]

then 0 < f ′′(x) < 1 ∀x

Logit Majorization

Theorem: Suppose

πk(x) =
exp(xk)

∑K

!=1
exp(x!)

x ∈ R
K

f(x) = −

K∑

k=1

yk log πk(x)

then

0 ≤ D2f(x) = Π(x) − π(x)π(x)′ ≤
1

2
I.

Where does PCA come in ?

D = −2
n∑

i=1

m∑

j=1

∑

k∈Kj

yijk log
exp(τjk + x

′
izj)∑

!∈Kj
exp(τjk + x′

izj)

D = −2
n∑

i=1

m∑

j=1

∑

k∈Kj

yijk log [Φ(τj,k+1 + x
′

izj) − Φ(τjk + x
′

izj)]

And thus ...

Using quadratic majorization on these deviances amounts 
to minimizing in each iteration a function of the form

and we know how to do this. In fact, two additional 
observations are very useful here. First, there is no need
to actually minimize the majorization function, it suffices 
to merely decrease it. Second, it is trivial to incorporate
missing data, in which i does not choose from j. This last 
observation makes it possible to analyze rank orders and
more general choice structures.

n∑

i=1

m∑

j=1

(ỹij − x
′

izj)
2




