Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Biomechanics models predict increasing smooth muscle tone as a novel therapeutic target for central arterial dysfunction in hypertension.

Abstract

INTRODUCTION: Vasodilation can paradoxically increase arterial stiffness in older, hypertensive adults. This study modeled increasing smooth muscle tone as a therapeutic strategy to improve central arterial dysfunction in hypertension using participant-specific simulations. METHODS: Participant-specific models of the carotid artery were parameterized from vascular ultrasound measures of nitroglycerin-induced vasodilation in 18 hypertensive veterans. The acute changes in carotid artery mechanics were simulated for changes of ±2, ±4, and ±6% in smooth muscle tone and ±5, ±10, and ±15 mmHg in mean arterial pressure (MAP). The chronic carotid artery adaptations were simulated based on the hypothesis that the carotid artery will remodel wall-cross sectional area to maintain mechanical homeostasis. RESULTS: A 6% increase in smooth muscle tone acutely decreased carotid pulse wave velocity from 6.89 ± 1.24 m/s to 5.83 ± 1.73 m/s, and a 15 mmHg decrease in MAP decreased carotid pulse wave velocity to 6.17 ± 1.23 m/s. A 6% increase in smooth muscle tone acutely decreased wall stress from 76.2 ± 12.3 to 64.2 ± 10.4 kPa, and a 15 mmHg decrease in MAP decreased wall stress to 60.6 ± 10.7 kPa. A 6% increase in smooth muscle tone chronically decreased wall cross-sectional area from 18.3 ± 5.4 to 15.2 ± 4.9 mm 2, and a 15 mmHg decrease in MAP decreased wall cross-sectional area to 14.3 ± 4.6 mm 2 . CONCLUSION: In participant-specific simulation, increasing smooth muscle tone can have a stronger or equivalent effect on carotid artery mechanics compared with decreasing blood pressure. Increasing central arterial smooth muscle tone may be a novel therapeutic target to improve central arterial dysfunction in older, hypertensive adults and should be a focus of future research.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View