Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A 13.56-MHz -25-dBm-Sensitivity Inductive Power Receiver System-on-a-Chip With a Self-Adaptive Successive Approximation Resonance Compensation Front-End for Ultra-Low-Power Medical Implants.

Abstract

Battery-less and ultra-low-power implantable medical devices (IMDs) with minimal invasiveness are the latest therapeutic paradigm. This work presents a 13.56-MHz inductive power receiver system-on-a-chip with an input sensitivity of -25.4 dBm (2.88 μW) and an efficiency of 46.4% while driving a light load of 30 μW. In particular, a real-time resonance compensation scheme is proposed to mitigate resonance variations commonly seen in IMDs due to different dielectric environments, loading conditions, and fabrication mismatches, etc. The power-receiving front-end incorporates a 6-bit capacitor bank that is periodically adjusted according to a successive-approximation-resonance-tuning (SART) algorithm. The compensation range is as much as 24 pF and it converges within 12 clock cycles and causes negligible power consumption overhead. The harvested voltage from 1.7 V to 3.3 V is digitized on-chip and transmitted via an ultra-wideband impulse radio (IR-UWB) back-telemetry for closed-loop regulation. The IC is fabricated in 180-nm CMOS process with an overall current dissipation of 750 nA. At a separation distance of 2 cm, the end-to-end power transfer efficiency reaches 16.1% while driving the 30-μW load, which is immune to artificially induced resonance capacitor offsets. The proposed system can be applied to various battery-less IMDs with the potential improvement of the power transfer efficiency on orders of magnitude.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View