- Main
Generation and transport of a low energy intense ion beam
Published Web Location
https://doi.org/10.1063/1.1759400Abstract
The paper describes experiments on the generation and transport of a low energy (70-120 keV), high intensity (10-30 A/cm(2)) microsecond duration H+ ion beam (IB) in vacuum and plasma. The IB was generated in a magnetically insulated diode (MID) with an applied radial B field and an active hydrogen-puff ion source. The annular IB, with an initial density of j(i)similar to10-20 A/cm(2) at the anode surface, was ballistically focused to a current density in the focal plane of 50-80 A/cm(2). The postcathode collimation and transport of the converging IB were provided by the combination of a "concave" toroidal magnetic lens followed by a straight transport solenoid section. With optimized MID parameters and magnetic fields in the lens/solenoid system, the overall efficiency of IB transport at the exit of the solenoid 1 m from the anode was similar to 50% with an IB current density of 20 A/cm(2). Two-dimensional computer simulations of post-MID IB transport supported the optimization of system parameters. (C) 2004 American Institute of Physics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-