Skip to main content
eScholarship
Open Access Publications from the University of California

Developing a Control Strategy for Minimum Airflow Setting Considering CO2 Level and Energy Consumption in a Variable Air Volume System

Abstract

In an office building equipped with a Variable Air Volume (VAV) system, this paper introduces a novel method for controlling the minimum supply airflow fraction in each zone’s VAV box, having a capability to consider indoor CO2 level and energy consumption. The EnergyPlus simulation using the medium office prototype model was employed, which evaluated the performance of the energy and CO2 concentration for five VAV box airflow control strategies. The paper focuses on CO2 concentration-based airflow control method and compares it with other four methods including conventional single-max, reduced minimum single-max, demand-controlled ventilation(DCV), and dualmax control methods according to guidelines and common practices. The newly proposed control strategy directly correlates the minimum airflow fraction to CO2 concentration. A general trend emerged when comparing CO2 concentrations—lower minimum airflow fractions were associated with higher concentrations. The proposed control method effectively maintained low CO2 concentrations and enabled a lower airflow fraction contributing to energy consumption reduction. It was confirmed that heating energy consumption in climate zone 4A, 5B, and 6A showed a maximum saving of approximately 30% compared to the conventional single-max and dual max control strategies. It was found that cooling energy consumption in climate zone 4A and 6A can achieve a maximum saving of approximately 10% compared to the conventional control strategies. The proposed CO2 concentration-based control logic is promising as it not only improves the indoor air quality lowering the CO2 concentration in the occupied spaces, but also contributes to HVAC energy savings.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View