- Main
Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway
Published Web Location
https://doi.org/10.1073/pnas.1715549114Abstract
Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO32-) is oxidized to phosphate (PO43-), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax (Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria, which has no known cultured isolates. Genes for phosphite oxidation and for CO2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-