Skip to main content
eScholarship
Open Access Publications from the University of California

Converting three‐space matrices to equivalent six‐space matrices for Delone scalars in S6

Abstract

The transformations from the primitive cells of the centered Bravais lattices to the corresponding centered cells have conventionally been listed as three-by-three matrices that transform three-space lattice vectors. Using those three-by-three matrices when working in the six-dimensional space of lattices represented as Selling scalars as used in Delone (Delaunay) reduction, one could transform to the three-space representation, apply the three-by-three matrices and then back-transform to the six-space representation, but it is much simpler to have the equivalent six-by-six matrices and apply them directly. The general form of the transformation from the three-space matrix to the corresponding matrix operating on Selling scalars (expressed in space S6) is derived, and the particular S6matrices for the centered Delone types are listed. (Note: in his later publications, Boris Delaunay used the Russian version of his surname, Delone.).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View