Skip to main content
eScholarship
Open Access Publications from the University of California

Fabrication of Functional 3D Nanoarchitectures via Atomic Layer Deposition on DNA Origami Crystals.

Abstract

While DNA origami is a powerful bottom-up fabrication technique, the physical and chemical stability of DNA nanostructures is generally limited to aqueous buffer conditions. Wet chemical silicification can stabilize these structures but does not add further functionality. Here, we demonstrate a versatile three-dimensional (3D) nanofabrication technique to conformally coat micrometer-sized DNA origami crystals with functional metal oxides via atomic layer deposition (ALD). In addition to depositing homogeneous and conformal nanometer-thin ZnO, TiO2, and IrO2 (multi)layers inside SiO2-stabilized crystals, we establish a method to directly coat bare DNA crystals with ALD layers while maintaining the crystal integrity, enabled by critical point drying and low ALD process temperatures. As a proof-of-concept application, we demonstrate electrocatalytic water oxidation using ALD IrO2-coated DNA origami crystals, resulting in improved performance relative to that of planar films. Overall, our coating strategy establishes a tool set for designing custom-made 3D nanomaterials with precisely defined topologies and material compositions, combining the unique advantages of DNA origami and atomically controlled deposition of functional inorganic materials.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View