- Main
Dissipative Selection of Low-Frequency Modes in a Reduced-Gravity Basin
Abstract
The spectrum of linear free modes of a reduced-gravity ocean in a closed basin with weak dissipation is examined. The constraint of total mass conservation, which in the quasigeostrophic formulation determines the pressure on the boundary as a function of time, allows the existence of selected large-scale, low-frequency basin modes that are very weakly damped in the presence of dissipation.
These weakly damped modes can be quasi-resonantly excited by time-dependent forcing near the eigenperiods, or during the process of adjustment to Sverdrup balance with a steady wind from arbitrary initial conditions. In both cases the frequency of the oscillations is a multiple of 2π/t0, where t0 is the long Rossby wave transit time, which is of the order of decades for midlatitude, large-scale basins. These oscillatory modes are missed when the global mass conservation constraint is overlooked.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-