- Main
Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease
Published Web Location
https://doi.org/10.1016/j.neurobiolaging.2015.04.005Abstract
Glial glutamate transporter, GLT-1, is the major Na+-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Ab pathology. In primary neuron and astrocyte coculture, naturally secreted A beta species significantly downregulate GLT-1 steady-state and expression levels. Taken together, our data strongly suggest that GLT-1 restoration is neuroprotective and A beta-induced astrocyte dysfunction represented by a functional loss of GLT-1 may serve as one of the major pathological links between Ab and tau pathology
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-