- Jiang, Xuanyuan;
- Hao, Guanhua;
- Wang, Xiao;
- Mosey, Aaron;
- Zhang, Xin;
- Yu, Le;
- Yost, Andrew J;
- Zhang, Xin;
- DiChiara, Anthony D;
- N’Diaye, Alpha T;
- Cheng, Xuemei;
- Zhang, Jian;
- Cheng, Ruihua;
- Xu, Xiaoshan;
- Dowben, Peter A
The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.