Predicting the evolution of fractured media is challenging due to coupled thermal, hydrological, chemical and mechanical processes that occur over a broad range of spatial scales, from the microscopic pore scale to field scale. We present a software framework and scientific workflow that couples the pore scale flow and reactive transport simulator Chombo-Crunch with the field scale geomechanics solver in GEOS to simulate fracture evolution in subsurface fluid-rock systems. This new multiphysics coupling capability comprises several novel features. An HDF5 data schema for coupling fracture positions between the two codes is employed and leverages the coarse resolution of the GEOS mechanics solver which limits the size of data coupled, and is, thus, not taxed by data resulting from the high resolution pore scale Chombo-Crunch solver. The coupling framework requires tracking of both before and after coarse nodal positions in GEOS as well as the resolved embedded boundary in Chombo-Crunch. We accomplished this by developing an approach to geometry generation that tracks the fracture interface between the two different methodologies. The GEOS quadrilateral mesh is converted to triangles which are organized into bins and an accessible tree structure; the nodes are then mapped to the Chombo representation using a continuous signed distance function that determines locations inside, on and outside of the fracture boundary. The GEOS positions are retained in memory on the Chombo-Crunch side of the coupling. The time stepping cadence for coupled multiphysics processes of flow, transport, reactions and mechanics is stable and demonstrates temporal reach to experimental time scales. The approach is validated by demonstration of 9 days of simulated time of a core flood experiment with fracture aperture evolution due to invasion of carbonated brine in wellbore-cement and sandstone. We also demonstrate usage of exascale computing resources by simulating a high resolution version of the validation problem on OLCF Frontier.