Atmospheric models that accurately describe the fate and transport of trace species for the right reasons aid in the development of effective air-quality management strategies that safeguard human health. Controllable emissions facilitate the formation of biogenic secondary organic aerosol (BSOA) to enhance the atmospheric fine particulate matter (PM2.5) burden. Previous modeling with the EPA's Community Multiscale Air Quality (CMAQ) model predicted that anthropogenic primary organic aerosol (POA) emissions had the greatest impact on BSOA. That experiment included formation processes involving semivolatile partitioning but not aerosol liquid water (ALW), a ubiquitous PM constituent. We conduct 17 summertime CMAQ simulations with updated chemistry and evaluate changes in BSOA due to the removal of individual pollutants and source sectors for the contiguous U.S. CMAQ predicts SO2 from electricity generating units, and mobile source NOX emissions have the largest impacts on BSOA. The removal of anthropogenic NOX, SO2, and POA emissions during the simulation reduces the nationally averaged BSOA by 23, 14, and 8% and PM2.5 by 9.2, 14, and 5.3%, respectively. ALW mass concentrations decrease by 10 and 35% in response to the removal of NOX and SO2 emissions. This work contributes chemical insight into ancillary benefits of Federal NOX and SO2 rules that concurrently reduce organic PM2.5 mass.