We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and development program makes it the baseline detector technology for SNAP. However, the results presented herein suggest that existing InGaAs technology is a suitable alternative for other future astronomy applications.