Crowdsourcing is an emerging distributed problem-solving model combining human and machine computation. It collects intelligence and knowledge from a large and diverse workforce to complete complex tasks. In the software engineering domain, crowdsourced techniques have been adopted to facilitate various tasks, such as design, testing, debugging, development, and so on. Specifically, in crowdsourced testing, crowdsourced workers are given testing tasks to perform and submit their feedback in the form of test reports. One of the key advantages of crowdsourced testing is that it is capable of providing engineers software engineers with domain knowledge and feedback from a large number of real users. Based on diverse software and hardware settings of these users, engineers can bugs that are not caught by traditional quality assurance techniques. Such benefits are particularly ideal for mobile application testing, which needs rapid development-and-deployment iterations and support diverse execution environments. However, crowdsourced testing naturally generates an overwhelming number of crowdsourced test reports, and inspecting such a large number of reports becomes a time-consuming yet inevitable task.
This dissertation presents a series of techniques, tools and experiments to assist in crowdsourced report processing. These techniques are designed for improving this task in multiple aspects: 1. prioritizing crowdsourced report to assist engineers in finding as many unique bugs as possible, and as quickly as possible; 2. grouping crowdsourced report to assist engineers in identifying the representative ones in a short time; 3. summarizing the duplicate reports to provide engineers with a concise and accurate understanding of a group of reports;
In the first step, I present a text-analysis-based technique to prioritize test reports for manual inspection. This technique leverages two key strategies: (1) a diversity strategy to help developers inspect a wide variety of test reports and to avoid duplicates and wasted effort on falsely classified faulty behavior, and (2) a risk-assessment strategy to help developers identify test reports that may be more likely to be fault-revealing based on past observations.Together, these two strategies form our technique to prioritize test reports in crowdsourced testing.
Moreover, in the mobile testing domain, test reports often consist of more screenshots and shorter descriptive text, and thus text-analysis-based techniques may be ineffective or inapplicable. The shortage and ambiguity of natural-language text information and the well-defined screenshots of activity views within mobile applications motivate me to propose a novel technique based on using image understanding for multi-objective test-report prioritization.
This technique employs the Spatial Pyramid Matching (SPM) technique to measure the similarity of the screenshots, and apply the natural-language processing technique to measure the distance between the text of test reports.
Next, I design and implement CTRAS: a novel approach to leveraging duplicates to enrich the content of bug descriptions and improve the efficiency of inspecting these reports. CTRAS is capable of automatically aggregating duplicates based on both textual information and screenshots, and further summarizes the duplicate test reports into a comprehensive and comprehensible report.
I validate all of these techniques on industrial data by collaborating with several companies. The results show my techniques can improve both the efficiency and effectiveness of crowdsourced test report processing. Also, I suggest settings for different usage scenarios and discuss future research directions.