Metalorganic chemical vapor deposition (MOCVD) has become a pivotal technique for developing wafer-scale transition metal dichalcogenide (TMD) 2D materials. This study investigates the impact of MOCVD growth conditions on achieving uniform and selective polymorph phase control of MoTe2 over large wafers. We demonstrated the controlled and uniform growth of few-layer MoTe2 in pure 2H, 1T', and mixed phases at various temperatures on up to 4 in. C-plane sapphire wafers with hexagonal boron nitride templates. At 600 °C, high-quality 2H-MoTe2 was obtained within a narrow temperature window, verified with absorption and TEM analysis. In addition, we observed strong exciton-phonon coupling effects in multiwavelength Raman spectroscopy when the excitation wavelength was in resonance with the C-exciton. Our findings indicate that temperature-induced Te vacancies play a crucial role in determining the MoTe2 phase. This study highlights the importance of precise control over the MOCVD growth temperature to engineer the MoTe2 phase of interest for device applications.