- Burstein, Matthew D;
- Tsimelzon, Anna;
- Poage, Graham M;
- Covington, Kyle R;
- Contreras, Alejandro;
- Fuqua, Suzanne AW;
- Savage, Michelle I;
- Osborne, C Kent;
- Hilsenbeck, Susan G;
- Chang, Jenny C;
- Mills, Gordon B;
- Lau, Ching C;
- Brown, Powel H
Purpose
Genomic profiling studies suggest that triple-negative breast cancer (TNBC) is a heterogeneous disease. In this study, we sought to define TNBC subtypes and identify subtype-specific markers and targets.Experimental design
RNA and DNA profiling analyses were conducted on 198 TNBC tumors [estrogen receptor (ER) negativity defined as Allred scale value ≤ 2] with >50% cellularity (discovery set: n = 84; validation set: n = 114) collected at Baylor College of Medicine (Houston, TX). An external dataset of seven publically accessible TNBC studies was used to confirm results. DNA copy number, disease-free survival (DFS), and disease-specific survival (DSS) were analyzed independently using these datasets.Results
We identified and confirmed four distinct TNBC subtypes: (i) luminal androgen receptor (AR; LAR), (ii) mesenchymal (MES), (iii) basal-like immunosuppressed (BLIS), and (iv) basal-like immune-activated (BLIA). Of these, prognosis is worst for BLIS tumors and best for BLIA tumors for both DFS (log-rank test: P = 0.042 and 0.041, respectively) and DSS (log-rank test: P = 0.039 and 0.029, respectively). DNA copy number analysis produced two major groups (LAR and MES/BLIS/BLIA) and suggested that gene amplification drives gene expression in some cases [FGFR2 (BLIS)]. Putative subtype-specific targets were identified: (i) LAR: androgen receptor and the cell surface mucin MUC1, (ii) MES: growth factor receptors [platelet-derived growth factor (PDGF) receptor A; c-Kit], (iii) BLIS: an immunosuppressing molecule (VTCN1), and (iv) BLIA: Stat signal transduction molecules and cytokines.Conclusion
There are four stable TNBC subtypes characterized by the expression of distinct molecular profiles that have distinct prognoses. These studies identify novel subtype-specific targets that can be targeted in the future for the effective treatment of TNBCs.