Skip to main content
eScholarship
Open Access Publications from the University of California

School of Medicine

Department of Cellular & Molecular Medicine - Open Access Policy Deposits bannerUC San Diego

This series is automatically populated with publications deposited by UC San Diego School of Medicine Department of Cellular & Molecular Medicine researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Correction: Gene expression and chromatin conformation of microglia in virally suppressed people with HIV.

Correction: Gene expression and chromatin conformation of microglia in virally suppressed people with HIV.

(2025)

Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the hosts genome (∼0.005%) should be corrected to: Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the hosts genome (∼0.5%).

Cover page of Bacterial WYL domain transcriptional repressors sense single-stranded DNA to control gene expression.

Bacterial WYL domain transcriptional repressors sense single-stranded DNA to control gene expression.

(2024)

Bacteria encode a wide array of immune systems to protect themselves against ubiquitous bacteriophages and foreign DNA elements. While these systems molecular mechanisms are becoming increasingly well known, their regulation remains poorly understood. Here, we show that an immune system-associated transcriptional repressor of the wHTH-WYL-WCX family, CapW, directly binds single-stranded DNA to sense DNA damage and activate expression of its associated immune system. We show that CapW mediates increased expression of a reporter gene in response to DNA damage in a host cell. CapW directly binds single-stranded DNA by-products of DNA repair through its WYL domain, causing a conformational change that releases the protein from double-stranded DNA. In an Escherichia coli CBASS system with an integrated capW gene, we find that CapW-mediated transcriptional activation is important for this systems ability to prevent induction of a λ prophage. Overall, our data reveal the molecular mechanisms of WYL-domain transcriptional repressors, and provide an example of how bacteria can balance the protective benefits of carrying anti-phage immune systems against the inherent risk of these systems aberrant activation.

Temporally distinct 3D multi-omic dynamics in the developing human brain

(2024)

The human hippocampus and prefrontal cortex play critical roles in learning and cognition1,2, yet the dynamic molecular characteristics of their development remain enigmatic. Here we investigated the epigenomic and three-dimensional chromatin conformational reorganization during the development of the hippocampus and prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation generated by single-nucleus methyl-3C sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally separated from chromatin conformation dynamics. Using single-cell profiling and multimodal single-molecule imaging approaches, we have found that short-range chromatin interactions are enriched in neurons, whereas long-range interactions are enriched in glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type development and differentiation, finding putatively causal common variants for schizophrenia strongly overlapping with chromatin loop-connected, cell-type-specific regulatory regions. Our data provide multimodal resources for studying gene regulatory dynamics in brain development and demonstrate that single-cell three-dimensional multi-omics is a powerful approach for dissecting neuropsychiatric risk loci.

Cover page of The human milk oligosaccharide 3′sialyllactose reduces low-grade inflammation and atherosclerosis development in mice

The human milk oligosaccharide 3′sialyllactose reduces low-grade inflammation and atherosclerosis development in mice

(2024)

Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3'SL attenuates mRNA levels of a selected set of inflammatory genes and promotes the activity of liver X receptor (LXR) and sterol regulatory element binding protein-1 (SREBP1). These acute antiinflammatory effects of 3'SL were associated with reduced histone H3K27 acetylation at a subset of LPS-inducible enhancers distinguished by preferential enrichment for CCCTC-binding factor (CTCF), IFN regulatory factor 2 (IRF2), B cell lymphoma 6 (BCL6), and other transcription factor recognition motifs. In a murine atherosclerosis model, both s.c. and oral administration of 3'SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3'SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.

Cover page of Direct and indirect regulation of β-glucocerebrosidase by the transcription factors USF2 and ONECUT2.

Direct and indirect regulation of β-glucocerebrosidase by the transcription factors USF2 and ONECUT2.

(2024)

Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinsons disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity. Among these, activation of MITF and TFEC increased lysosomal GCase activity in live cells, while activation of ONECUT2 and USF2 decreased it. While MITF, TFEC, and USF2 affected GBA1 transcription, ONECUT2 might control GCase trafficking. The effects of MITF, TFEC, and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.

Cover page of Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore.

Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore.

(2024)

Multiple microtubule-directed activities concentrate on mitotic chromosomes to ensure their faithful segregation. These include couplers and dynamics regulators localized at the kinetochore, the microtubule interface built on centromeric chromatin, as well as motor proteins recruited to kinetochores and chromatin. Here, we describe an in vivo approach in the C. elegans one-cell embryo in which removal of the major microtubule-directed activities on mitotic chromosomes is compared to the selective presence of individual activities. Our approach reveals that the kinetochore dynein module, comprised of cytoplasmic dynein and its kinetochore-specific adapters, is sufficient to biorient chromosomes; by contrast, this module is unable to support congression. In coordination with orientation, the dynein module directs removal of outermost kinetochore components, including dynein itself, independently of the other microtubule-directed activities and kinetochore-localized protein phosphatase 1. These observations indicate that the kinetochore dynein module is sufficient to biorient chromosomes and to direct remodeling of the outer kinetochore in a microtubule attachment state-sensitive manner.

Cover page of PACS-1 variant protein is aberrantly localized in Caenorhabditis elegans model of PACS1/PACS2 syndromes.

PACS-1 variant protein is aberrantly localized in Caenorhabditis elegans model of PACS1/PACS2 syndromes.

(2024)

PACS (phosphofurin acidic cluster sorting) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of Caenorhabditis elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 colocalize to somatic cytoplasm of many types of cells and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

Cover page of A living organoid biobank of patients with Crohn’s disease reveals molecular subtypes for personalized therapeutics

A living organoid biobank of patients with Crohn’s disease reveals molecular subtypes for personalized therapeutics

(2024)

Crohn's disease (CD) is a complex and heterogeneous condition with no perfect preclinical model or cure. To address this, we explore adult stem cell-derived organoids that retain their tissue identity and disease-driving traits. We prospectively create a biobank of CD patient-derived organoid cultures (PDOs) from colonic biopsies of 53 subjects across all clinical subtypes and healthy subjects. Gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and identified two major molecular subtypes: immune-deficient infectious CD (IDICD) and stress and senescence-induced fibrostenotic CD (S2FCD). Each subtype shows internal consistency in the transcriptome, genome, and phenome. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. Drug screens reverse subtype-specific phenotypes, suggesting phenotyped-genotyped CD PDOs can bridge basic biology and patient trials by enabling preclinical phase "0" human trials for personalized therapeutics.

Cover page of Gene expression and chromatin conformation of microglia in virally suppressed people with HIV

Gene expression and chromatin conformation of microglia in virally suppressed people with HIV

(2024)

The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique "Last Gift" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (∼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.