Skip to main content
eScholarship
Open Access Publications from the University of California

NanoEngineering UCSD - Open Access Policy Deposits

This series is automatically populated with publications deposited by UC San Diego Department of NanoEngineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Plant Virus Intratumoral Immunotherapy with CPMV and PVX Elicits Durable Antitumor Immunity in a Mouse Model of Diffuse Large B-Cell Lymphoma.

Plant Virus Intratumoral Immunotherapy with CPMV and PVX Elicits Durable Antitumor Immunity in a Mouse Model of Diffuse Large B-Cell Lymphoma.

(2024)

Plant viruses are naturally occurring nanoparticles and adjuvants that interact with the mammalian immune system. This property can be harnessed in vaccines and immunotherapy. We have previously demonstrated that intratumoral immunotherapy with cowpea mosaic virus (CPMV) stimulates systemic and durable antitumor immunity in mouse tumor models and canine cancer patients. Here we compared the antitumor efficacy of CPMV with potato virus X (PVX) using a mouse model B-cell lymphoma (A20 and BALB/c mice). Despite their diverse morphologies and physiochemical properties, both plant viruses elicited systemic and long-lasting antitumor immune memory, preventing the recurrence of A20 lymphoma in rechallenge experiments. Data indicate differences in the underlying mechanism: CPMV persists longer in the tumor microenvironment (TME) compared to PVX; CPMV is a potent and multivalent toll-like receptor (TLR) agonist (activating TLRs 2, 4 and 7) while PVX may only weakly engage with TLR7. While CPMV and PVX recruit myeloid cells (neutrophils)─CPMV also recruits macrophages. Data further indicate that antiviral T cells may play a role in antitumor efficacy in the case of CPMV immunotherapy, however this may not be the case for PVX. Regardless of the mechanism of action, both CPMV and PVX elicited a durable antitumor response against a B-cell lymphoma tumor model and thus are intratumoral immunotherapy candidates for clinical development.

Cover page of Cellular Nanoparticles Treat Coronavirus Infection in Vivo.

Cellular Nanoparticles Treat Coronavirus Infection in Vivo.

(2024)

Cellular nanoparticles (CNPs), which refer to nanoparticles coated with natural cell membranes, are promising for neutralizing pathological agents. Here, we use CNPs as a medical countermeasure against the infection of SARS-CoV-2 variants in an animal model. CNPs comprise polymeric cores coated with the plasma membranes of human macrophages. The resulting nanoparticles (MΦ-NPs) act as host cell decoys to intercept SARS-CoV-2 and block its cellular entry, thus inhibiting subsequent viral infection. Our findings indicate that MΦ-NPs bind to the spike proteins of SARS-CoV-2 variants in a dose-dependent manner and inhibit the infectivity of live viruses. In hamsters infected with SARS-CoV-2 variants, MΦ-NPs significantly reduce the viral burden in the lungs, demonstrating their effectiveness in inhibiting viral infectivity in vivo. Furthermore, MΦ-NPs are primarily taken up by alveolar macrophages without inducing noticeable adverse effects. Given the crucial role of macrophages in viral infections, MΦ-NPs present a promising approach to combating emerging viral threats.

Cover page of Proton-exchange induced reactivity in layered oxides for lithium-ion batteries.

Proton-exchange induced reactivity in layered oxides for lithium-ion batteries.

(2024)

LiNixCoyMn1-x-yO2 (0 < x, y < 1, NCM) is the dominant positive material for the state-of-the-art lithium-ion batteries. However, the sensitivity of NCM materials to moisture makes their manufacturing, storage, transportation, electrode processing and recycling complicated. Although it is recognized that protons play a critical role in their structure stability and performance, proton exchange with Li+ in NCM materials has not been well understood. Here, we employ advanced characterizations and computational studies to elucidate how protons intercalate into the layered structure of NCM, leading to the leaching of Li+ and the formation of protonated NCM. It is found that protonation facilitates cation rearrangement and formation of impurity phases in NCM, significantly deteriorating structural stability. The adverse effects induced by protons become increasingly pronounced with a higher Ni content in NCM. Through a comprehensive investigation into the thermodynamics and kinetics of protonation, we discover that Li deficiencies in NCM materials can be resolved via solution process in the presence of Li+ ions and controlled proton concentration. The underlying mechanism of relithiation is further explored through materials characterizations and kinetics modeling. This work provides crucial insights into controlling structural and compositional defects of Li-ion battery positive material in complicated processing environment.

Cover page of Ultrasound identification of the cementoenamel junction and clinical correlation through ex vivo analysis.

Ultrasound identification of the cementoenamel junction and clinical correlation through ex vivo analysis.

(2024)

Accurately identifying periodontal landmarks via acoustic imaging is increasingly important. Here, we evaluated the accuracy of cementoenamel junction (CEJ) identification using ultrasound by comparing it to clinical methods in 153 extracted human teeth. The distance between the CEJ to a reference point was measured using two clinical methods (visual examination and tactile sensation) as well as ultrasound imaging. Statistical analyses were performed across all teeth and sub-groups, including tooth types (incisors, cuspids, and molars/premolars), and two classifications: A- vs. B- (visually detectable or undetectable CEJ, respectively); and CL-S vs. CL-D (shallow or deep cervical lesions). In A- or CL-S teeth, ultrasound measurements highly agreed with clinical measurements, showing a 1.72-mm 95% CI for A- and 1.99-mm 95% CI for CL-S compared to visual examination, and a 1.77-mm 95% CI for A- and a 2.10-mm 95% CI for CL-S compared to tactile sensation, respectively. For 80% of A- and 76% of CL-S teeth, the difference between ultrasound and visual examination was within ± 20%. For 81% of A- and 80% of CL-S teeth, the difference between ultrasound and tactile sensation was within ± 20%. The variance of ultrasound versus clinical CEJ identifications showed a significant correlation (r = 0.6607) to the cervical lesion depth. The errors between ultrasound and clinical measurements show no significant bias across different tooth types.

Cover page of Research Advances of Cellular Nanoparticles as Multiplex Countermeasures.

Research Advances of Cellular Nanoparticles as Multiplex Countermeasures.

(2024)

Cellular nanoparticles (CNPs), fabricated by coating natural cell membranes onto nanoparticle cores, have been widely used to replicate cellular functions for various therapeutic applications. Specifically, CNPs act as cell decoys, binding harmful molecules or infectious pathogens and neutralizing their bioactivity. This neutralization strategy leverages the targets functional properties rather than its structure, resulting in broad-spectrum efficacy. Since their inception, CNP platforms have undergone significant advancements to enhance their neutralizing capabilities and efficiency. This review traces the research advances of CNP technology as multiplex countermeasures across four categories with progressive functions: neutralization through cell membrane binding, simultaneous neutralization using both cell membrane and nanoparticle core, continuous neutralization via enzymatic degradation, and enhanced neutralization through membrane modification. The review highlights the structure-property relationship in CNP designs, showing the functional advances of each category of CNP. By providing an overview of CNPs in multiplex neutralization of a wide range of chemical and biological threat agents, this article aims to inspire the development of more advanced CNP nanoformulations and uncover innovative applications to address unresolved medical challenges.

Cover page of A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring.

A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring.

(2024)

The demand for glucose monitoring devices has witnessed continuous growth from the rising diabetic population. The traditional approach of blood glucose (BG) sensor strip testing generates only intermittent glucose readings. Interstitial fluid-based devices measure glucose dynamically, but their sensing approaches remain either minimally invasive or prone to skin irritation. Here, a sweat glucose monitoring system is presented, which completely operates under rest with no sweat stimulation and can generate real-time BG dynamics. Osmotically driven hydrogels, capillary action with paper microfluidics, and self-powered enzymatic biochemical sensor are used for simultaneous sweat extraction, transport, and glucose monitoring, respectively. The osmotic forces facilitate greater flux inflow and minimize sweat rate fluctuations compared to natural perspiration-based sampling. The epidermal platform is tested on fingertip and forearm under varying physiological conditions. Personalized calibration models are developed and validated to obtain real-time BG information from sweat. The estimated BG concentration showed a good correlation with measured BG concentration, with all values lying in the A+B region of consensus error grid (MARD = 10.56% (fingertip) and 13.17% (forearm)). Overall, the successful execution of such osmotically driven continuous BG monitoring system from passive sweat can be a useful addition to the next-generation continuous sweat glucose monitors.

Cover page of Surface‐Grafted Biocompatible Polymer Conductors for Stable and Compliant Electrodes for Brain Interfaces

Surface‐Grafted Biocompatible Polymer Conductors for Stable and Compliant Electrodes for Brain Interfaces

(2024)

Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface-initiated atom-transfer radical polymerization (SI-ATRP) is described. This "block-brush" provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge-discharge voltage sweeps on a multiarray neural electrode. In addition, the block-brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.

Cover page of Virus nanotechnology for intratumoural immunotherapy.

Virus nanotechnology for intratumoural immunotherapy.

(2024)

Viruses can be designed to be tools and carrier vehicles for intratumoural immunotherapy. Their nanometre-scale size and shape allow for functionalization with or encapsulation of medical cargoes and tissue-specific ligands. Importantly, immunotherapies may particularly benefit from the inherent immunomodulatory properties of viruses. For example, mammalian viruses have already been tested for oncolytic virotherapy, and bacteriophages and plant viruses can be engineered for immunotherapeutic treatment approaches. In this Review, we discuss how viruses - including oncolytic viruses, immunomodulatory plant viruses and bacteriophages - and virus-like particles can be designed for intratumoural immunotherapy to elicit anti-tumour immunity and induce systemic anti-tumour responses at distant non-injected sites. We further highlight the engineering of viruses and virus-like particles as drug-delivery systems, and outline key translational challenges and clinical opportunities.

Cover page of Cellular fate of a plant virus immunotherapy candidate.

Cellular fate of a plant virus immunotherapy candidate.

(2024)

Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.

Cover page of Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping.

Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping.

(2024)

Solar-driven thermochemical hydrogen (STCH) production represents a sustainable approach for converting solar energy into hydrogen (H2) as a clean fuel. This technology serves as a crucial feedstock for synthetic fuel production, aligning with the principles of sustainable energy. The efficiency of the conversion process relies on the meticulous tuning of the properties of active materials, mostly commonly perovskite and fluorite oxides. This Review conducts a comprehensive review encompassing experimental, computational, and thermodynamic and kinetic property studies, primarily assessing the utilization of perovskite oxides in two-step thermochemical reactions and identifying essential attributes for future research endeavors. Furthermore, this Review delves into the application of machine learning (ML) and density functional theory (DFT) for predicting and classifying the thermochemical properties of perovskite materials. Through the integration of experimental investigations, computational modeling, and ML methodologies, this Review aspires to expedite the screening and optimization of perovskite oxides, thus enhancing the efficiency of STCH processes. The overarching objective is to propel the advancement and practical integration of STCH systems, contributing significantly to the realization of a sustainable and carbon-neutral energy landscape.