About
The goals of the Department of Microbiology and Plant Pathology are to conduct research on the basic biology of plant pathogens and microbes, to develop methods for the management of microbial diseases of plants and other organisms, to provide a quality education to our students; and be a repository of expert advice on plant diseases and microbiology to the citizens of California and the world.
Our department has its roots in the Citrus Experiment Station, which was established in Riverside in 1905. Our department is also the basis of the International Organization of Citrus Virologists (IOCV). IOCV was formed during the first international conference on citrus virus diseases held at Riverside in 1957. Although the department has maintained strength in the study of diseases of citrus, the scope has expanded to include concentrations in numerous other plant diseases as well as many sub-disciplines of microbiology. Represented among our faculty are experts in the fields of genetics, genomics, bioinformatics, molecular biology, cell biology, biochemistry, ecology, evolutionary biology, and traditional aspects of disease control. Many faculty members have close interactions with industry representatives, advisors, and policy makers throughout California and worldwide. This is critical to applied research for identifying emerging and common plant diseases and microbes, and developing innovative management programs based on ecological and epidemiological approaches.
We invite you to explore the research programs of our world-class faculty, our critical work in cooperative extension, and the graduate and undergraduate programs that we sponsor.
Microbiology and Plant Pathology
Recent Work (528)
Landscape characteristics shape surface soil microbiomes in the Chihuahuan Desert
Introduction
Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert.Methods
This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity.Results
Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea (p = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition (p ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations.Discussion
Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world.Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons
While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.
Exploring the Effects of Trichoderma virens Biofungicide on Carrot Cavity Spot and Soil Fungal Community Dynamics
Carrot cavity spot (CCS) has conventionally been managed with fungicides. However, fungicide resistance, their potential risks to human health and the environment, and the increasing demand for organic produce necessitate the exploration of biofungicides as alternatives. In this study, we evaluated varying concentrations of SoilGard (Certis USA, Columbia, MD), a Trichoderma virens-based biofungicide, for efficacy against different CCS-causing Pythium species in vitro. Additionally, its effects on taxonomic and functional diversities of soil fungal communities were studied in vivo in the greenhouse. To our knowledge, this is the first study reporting SoilGard's effectiveness against CCS, with emphasis on its potential as an alternative for fungicide-resistant Pythium isolates. Our in vitro study revealed that SoilGard efficacy was significantly dose-dependent and isolate-specific, thus highlighting the importance of selecting its application rate and the target isolate. Analysis of soil fungal communities using Illumina MiSeq sequencing revealed that SoilGard exerted a significant, albeit temporary, effect on the fungal community structure. It negatively impacted co-occurrence network complexity and alpha diversity in carrot-cultivated soil, whereas bare soil communities remained largely unaffected, thus explaining why preplant applications may yield better results. Our study showed that carrot cultivation without SoilGard enhanced fungal diversity, which was more pronounced late in the season, possibly due to carrot root-associated exudates. Our study sheds light on how complex interactions within soil fungal communities can be impacted by the application of beneficial/pathogenic microbes.