Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Open Access Policy Deposits bannerUC Davis

This series is automatically populated with publications deposited by UC Davis Department of Mathematics researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

THE BEST WAYS TO SLICE A POLYTOPE

(2025)

We study the structure of the set of all possible affine hyperplane sections of a convex polytope. We present two different cell decompositions of this set, induced by hyperplane arrangements. Using our decomposition, we bound the number of possible combinatorial types of sections and craft algorithms that compute optimal sections of the polytope according to various combinatorial and metric criteria, including sections that maximize the number of k-dimensional faces, maximize the volume, and maximize the integral of a polynomial. Our optimization algorithms run in polynomial time in fixed dimension, but the same problems show computational complexity hardness otherwise. Our tools can be extended to intersection with halfspaces and projections onto hyperplanes. Finally, we present several experiments illustrating our theorems and algorithms on famous polytopes.

Cover page of Tree polynomials identify a link between co-transcriptional R-loops and nascent RNA folding

Tree polynomials identify a link between co-transcriptional R-loops and nascent RNA folding

(2024)

R-loops are a class of non-canonical nucleic acid structures that typically form during transcription when the nascent RNA hybridizes the DNA template strand, leaving the non-template DNA strand unpaired. These structures are abundant in nature and play important physiological and pathological roles. Recent research shows that DNA sequence and topology affect R-loops, yet it remains unclear how these and other factors contribute to R-loop formation. In this work, we investigate the link between nascent RNA folding and the formation of R-loops. We introduce tree-polynomials, a new class of representations of RNA secondary structures. A tree-polynomial representation consists of a rooted tree associated with an RNA secondary structure together with a polynomial that is uniquely identified with the rooted tree. Tree-polynomials enable accurate, interpretable and efficient data analysis of RNA secondary structures without pseudoknots. We develop a computational pipeline for investigating and predicting R-loop formation from a genomic sequence. The pipeline obtains nascent RNA secondary structures from a co-transcriptional RNA folding software, and computes the tree-polynomial representations of the structures. By applying this pipeline to plasmid sequences that contain R-loop forming genes, we establish a strong correlation between the coefficient sums of tree-polynomials and the experimental probability of R-loop formation. Such strong correlation indicates that the pipeline can be used for accurate R-loop prediction. Furthermore, the interpretability of tree-polynomials allows us to characterize the features of RNA secondary structure associated with R-loop formation. In particular, we identify that branches with short stems separated by bulges and interior loops are associated with R-loops.

Effect of fluid elasticity on the emergence of oscillations in an active elastic filament

(2024)

Many microorganisms propel themselves through complex media by deforming their flagella. The beat is thought to emerge from interactions between forces of the surrounding fluid, the passive elastic response from deformations of the flagellum and active forces from internal molecular motors. The beat varies in response to changes in the fluid rheology, including elasticity, but there are limited data on how systematic changes in elasticity alter the beat. This work analyses a related problem with fixed-strength driving force: the emergence of beating of an elastic planar filament driven by a follower force at the tip of a viscoelastic fluid. This analysis examines how the onset of oscillations depends on the strength of the force and viscoelastic parameters. Compared to a Newtonian fluid, it takes more force to induce the instability in viscoelastic fluids, and the frequency of the oscillation is higher. The linear analysis predicts that the frequency increases with the fluid relaxation time. Using numerical simulations, the model predictions are compared with experimental data on frequency changes in the bi-flagellated alga Chlamydomonas reinhardtii. The model shows the same trends in response to changes in both fluid viscosity and Deborah number and thus provides a possible mechanistic understanding of the experimental observations.

Weighted Ehrhart theory: Extending Stanley's nonnegativity theorem

(2024)

We generalize R. P. Stanley's celebrated theorem that the h⁎-polynomial of the Ehrhart series of a rational polytope has nonnegative coefficients and is monotone under containment of polytopes. We show that these results continue to hold for weighted Ehrhart series where lattice points are counted with polynomial weights, as long as the weights are homogeneous polynomials decomposable as sums of products of linear forms that are nonnegative on the polytope. We also show nonnegativity of the h⁎-polynomial as a real-valued function for a larger family of weights. We explore the case when the weight function is the square of a single (arbitrary) linear form. We show stronger results for two-dimensional convex lattice polygons and give concrete examples showing tightness of the hypotheses. As an application, we construct a counterexample to a conjecture by Berg, Jochemko, and Silverstein on Ehrhart tensor polynomials.

From Quasi-Symmetric to Schur Expansions with Applications to Symmetric Chain Decompositions and Plethysm

(2024)

It is an important problem in algebraic combinatorics to deduce the Schur function expansion of a symmetric function whose expansion in terms of the fundamental quasisymmetric function is known. For example, formulas are known for the fundamental expansion of a Macdonald symmetric function and for the plethysm of two Schur functions, while the Schur expansions of these expressions are still elusive. Based on work of Egge, Loehr and Warrington, Garsia and Remmel provided a method to obtain the Schur expansion from the fundamental expansion by replacing each quasisymmetric function by a Schur function (not necessarily indexed by a partition) and using straightening rules to obtain the Schur expansion. Here we provide a new method that only involves the coefficients of the quasisymmetric functions indexed by partitions and the quasi-Kostka matrix. As an application, we identify the lexicographically largest term in the Schur expansion of the plethysm of two Schur functions. We provide the Schur expansion of sw [sh](x, y) for w = 2, 3, 4 using novel symmetric chain decompositions of Young’s lattice for partitions in a w × h box. For w = 4, this is the first known combinatorial expression for the coefficient of sλ in sw [sh] for two-row partitions λ, and for w = 3 the combinatorial expression is new.

Cover page of Klein–Maskit combination theorem for Anosov subgroups: Amalgams

Klein–Maskit combination theorem for Anosov subgroups: Amalgams

(2024)

Abstract: The classical Klein–Maskit combination theorems provide sufficient conditions to construct new Kleinian groups using old ones. There are two distinct but closely related combination theorems: the first deals with amalgamated free products, whereas the second deals with HNN extensions. This article gives analogs of both combination theorems for Anosov subgroups.

Cover page of A computational model predicts sex-specific responses to calcium channel blockers in mammalian mesenteric vascular smooth muscle

A computational model predicts sex-specific responses to calcium channel blockers in mammalian mesenteric vascular smooth muscle

(2024)

The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in silico model, which we call the 'Hernandez-Hernandez model', of electrical and Ca2+ signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca2+ signaling during the development of myogenic tone in arterial blood vessels. Although experimental data suggest that KV1.5 channel currents have similar amplitudes, kinetics, and voltage dependencies in male and female myocytes, simulations suggest that the KV1.5 current is the dominant current regulating membrane potential in male myocytes. In female cells, which have larger KV2.1 channel expression and longer time constants for activation than male myocytes, predictions from simulated female myocytes suggest that KV2.1 plays a primary role in the control of membrane potential. Over the physiological range of membrane potentials, the gating of a small number of voltage-gated K+ channels and L-type Ca2+ channels are predicted to drive sex-specific differences in intracellular Ca2+ and excitability. We also show that in an idealized computational model of a vessel, female arterial smooth muscle exhibits heightened sensitivity to commonly used Ca2+ channel blockers compared to male. In summary, we present a new model framework to investigate the potential sex-specific impact of antihypertensive drugs.

Cover page of PrestoCell: A persistence-based clustering approach for rapid and robust segmentation of cellular morphology in three-dimensional data

PrestoCell: A persistence-based clustering approach for rapid and robust segmentation of cellular morphology in three-dimensional data

(2024)

Light microscopy methods have continued to advance allowing for unprecedented analysis of various cell types in tissues including the brain. Although the functional state of some cell types such as microglia can be determined by morphometric analysis, techniques to perform robust, quick, and accurate measurements have not kept pace with the amount of imaging data that can now be generated. Most of these image segmentation tools are further burdened by an inability to assess structures in three-dimensions. Despite the rise of machine learning techniques, the nature of some biological structures prevents the training of several current day implementations. Here we present PrestoCell, a novel use of persistence-based clustering to segment cells in light microscopy images, as a customized Python-based tool that leverages the free multidimensional image viewer Napari. In evaluating and comparing PrestoCell to several existing tools, including 3DMorph, Omipose, and Imaris, we demonstrate that PrestoCell produces image segmentations that rival these solutions. In particular, our use of cell nuclei information resulted in the ability to correctly segment individual cells that were interacting with one another to increase accuracy. These benefits are in addition to the simplified graphically based user refinement of cell masks that does not require expensive commercial software licenses. We further demonstrate that PrestoCell can complete image segmentation in large samples from light sheet microscopy, allowing quantitative analysis of these large datasets. As an open-source program that leverages freely available visualization software, with minimum computer requirements, we believe that PrestoCell can significantly increase the ability of users without data or computer science expertise to perform complex image analysis.