Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis

Abstract

Rationale & objective

The usefulness of measures of neutrophil gelatinase-associated lipocalin (NGAL) in urine or plasma obtained on clinical laboratory platforms for predicting acute kidney injury (AKI) and AKI requiring dialysis (AKI-D) has not been fully evaluated. We sought to quantitatively summarize published data to evaluate the value of urinary and plasma NGAL for kidney risk prediction.

Study design

Literature-based meta-analysis and individual-study-data meta-analysis of diagnostic studies following PRISMA-IPD guidelines.

Setting & study populations

Studies of adults investigating AKI, severe AKI, and AKI-D in the setting of cardiac surgery, intensive care, or emergency department care using either urinary or plasma NGAL measured on clinical laboratory platforms.

Selection criteria for studies

PubMed, Web of Science, Cochrane Library, Scopus, and congress abstracts ever published through February 2020 reporting diagnostic test studies of NGAL measured on clinical laboratory platforms to predict AKI.

Data extraction

Individual-study-data meta-analysis was accomplished by giving authors data specifications tailored to their studies and requesting standardized patient-level data analysis.

Analytical approach

Individual-study-data meta-analysis used a bivariate time-to-event model for interval-censored data from which discriminative ability (AUC) was characterized. NGAL cutoff concentrations at 95% sensitivity, 95% specificity, and optimal sensitivity and specificity were also estimated. Models incorporated as confounders the clinical setting and use versus nonuse of urine output as a criterion for AKI. A literature-based meta-analysis was also performed for all published studies including those for which the authors were unable to provide individual-study data analyses.

Results

We included 52 observational studies involving 13,040 patients. We analyzed 30 data sets for the individual-study-data meta-analysis. For AKI, severe AKI, and AKI-D, numbers of events were 837, 304, and 103 for analyses of urinary NGAL, respectively; these values were 705, 271, and 178 for analyses of plasma NGAL. Discriminative performance was similar in both meta-analyses. Individual-study-data meta-analysis AUCs for urinary NGAL were 0.75 (95% CI, 0.73-0.76) and 0.80 (95% CI, 0.79-0.81) for severe AKI and AKI-D, respectively; for plasma NGAL, the corresponding AUCs were 0.80 (95% CI, 0.79-0.81) and 0.86 (95% CI, 0.84-0.86). Cutoff concentrations at 95% specificity for urinary NGAL were>580ng/mL with 27% sensitivity for severe AKI and>589ng/mL with 24% sensitivity for AKI-D. Corresponding cutoffs for plasma NGAL were>364ng/mL with 44% sensitivity and>546ng/mL with 26% sensitivity, respectively.

Limitations

Practice variability in initiation of dialysis. Imperfect harmonization of data across studies.

Conclusions

Urinary and plasma NGAL concentrations may identify patients at high risk for AKI in clinical research and practice. The cutoff concentrations reported in this study require prospective evaluation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View