Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Simplifying intensity‐modulated radiotherapy plans with fewer beam angles for the treatment of oropharyngeal carcinoma

Abstract

The first aim of the present study was to investigate the feasibility of using fewer beam angles to improve delivery efficiency for the treatment of oropharyngeal cancer (OPC) with inverse-planned intensity-modulated radiation therapy (IP-IMRT). A secondary aim was to evaluate whether the simplified IP-IMRT plans could reduce the indirect radiation dose. The treatment plans for 5 consecutive OPC patients previously treated with a forward-planned IMRT (FP-IMRT) technique were selected as benchmarks for this study. The initial treatment goal for these patients was to deliver 70 Gy to > or = 95% of the planning gross tumor volume (PTV-70) and 59.4 Gy to > or = 95% of the planning clinical tumor volume (PTV-59.4) simultaneously. Each case was re-planned using IP-IMRT with multiple beam-angle arrangements, including four complex IP-IMRT plans using 7 or more beam angles, and one simple IMRT plan using 5 beam angles. The complex IP-IMRT plans and simple IP-IMRT plans were compared to each other and to the FPIMRT plans by analyzing the dose coverage of the target volumes, the plan homogeneity, the dose-volume histograms of critical structures, and the treatment delivery parameters including delivery time and the total number of monitor units (MUs). When comparing the plans, we found no significant difference between the complex IP-IMRT, simple IP-IMRT, and FP-IMRT plans for tumor target coverage (PTV-70: p = 0.56; PTV-59.4: p = 0.20). The plan homogeneity, measured by the mean percentage isodose, did not significantly differ between the IP-IMRT and FP-IMRT plans (p = 0.08), although we observed a trend toward greater inhomogeneity of dose in the simple IP-IMRT plans. All IP-IMRT plans either met or exceeded the quality of the FP-IMRT plans in terms of dose to adjacent critical structures, including the parotids, spinal cord, and brainstem. As compared with the complex IP-IMRT plans, the simple IP-IMRT plans significantly reduced the mean treatment time (maximum probability for four pairwise comparisons: p = 0.0003). In conclusion, our study demonstrates that, as compared with complex IP-IMRT, simple IP-IMRT can significantly improve treatment delivery efficiency while maintaining similar target coverage and sparing of critical structures. However, the improved efficiency does not significantly reduce the total number of MUs nor the indirect radiation dose.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View