Skip to main content
Download PDF
- Main
Early Cortical Microstructural Changes in Aging Are Linked to Vulnerability to Alzheimer’s Disease Pathology
Published Web Location
https://doi.org/10.1016/j.bpsc.2024.05.012Abstract
Background
Early identification of Alzheimer's disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification.Methods
In 194 adults, we calculated magnetic resonance imaging-derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography-derived maps of AD pathology deposition (amyloid-β, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps.Results
Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = -0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (β = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05).Conclusions
Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%