Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The role of secondary char oxidation in the transition from smoldering to flaming

Abstract

The transition from forward smoldering to flaming in polyurethane foam is observed using in-depth thermocouples and ultrasound probing. The experiments are conducted with small parallelepiped samples vertically placed in an upward wind tunnel. Three of the vertical sample sides are maintained at elevated temperature and the fourth is exposed to an upward oxidizer flow and a radiant heat flux. An ultrasound probing technique is used to measure the line-of-sight average permeability of the sample at the same heights as the thermocouples. The smolder front propagation is tracked by both the thermocouples and ultrasound data, which show an increase in temperature and permeability upon passage of the smolder front. The permeability data also show that the transition to flaming is preceded by rapid fluctuations in permeability in the char region below the smolder front, indicating the formation of pores by secondary char oxidation. The pores provide locations for the onset of gas-phase ignition (i.e. transition to flaming). The results from all the tests indicate that the formation of pores is a necessary but not sufficient condition for the transition to flaming. Two novel measures of the intensity of the secondary char oxidation are introduced: the time derivative of permeability, and the secondary char oxidation velocity. The time derivative of permeability, which provides a measure of the pore formation rate, is found to increase as the oxygen concentration and/or radiant heat flux increase, and to indicate the likelihood of the transition to flaming. The permeability data offers a means to track the propagation of the secondary char oxidation, and to calculate the secondary char oxidation velocity, which is found to be strongly correlated to the transition to flaming. A simplified energy balance model is able to predict the dependence of the secondary char oxidation velocity on oxygen concentration and radiant heat flux.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View