Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Reducing Microfluidic Very Large-Scale Integration (mVLSI) Chip Area by Seam Carving

Abstract

Seam carving is an algorithm that analyzes image content and can be used for size reduction in a manner that avoids direct compression or downscaling. Seam carving iteratively identifies horizontal and/or vertical paths of least visual importance and removes them from the image; each path removal reduces the length or width of the image by one row or column of pixels. This article adapts seam carving to reduce excess area of flow-based microfluidic chips that have been drawn by hand or by computer-aided heuristics without negatively impacting their functionality. The proposed approach leverages domain knowledge, wherein the image to be carved consists of I/O ports, components, and fluid channels, with known and understood fluidic behavior. Three different variants of seam carving are presented: 1) linear; 2) nonlinear; and 3) nonrectilinear; experimental results show that nonrectilinear, which is the most general of the three, yields the best results: it improves area utilization by 8.6\times and reduces fluid routing channel length by 73% across a set of benchmark microfluidic designs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View