- Main
Learning diffractive optical communication around arbitrary opaque occlusions.
Published Web Location
https://doi.org/10.1038/s41467-023-42556-0Abstract
Free-space optical communication becomes challenging when an occlusion blocks the light path. Here, we demonstrate a direct communication scheme, passing optical information around a fully opaque, arbitrarily shaped occlusion that partially or entirely occludes the transmitters field-of-view. In this scheme, an electronic neural network encoder and a passive, all-optical diffractive network-based decoder are jointly trained using deep learning to transfer the optical information of interest around the opaque occlusion of an arbitrary shape. Following its training, the encoder-decoder pair can communicate any arbitrary optical information around opaque occlusions, where the information decoding occurs at the speed of light propagation through passive light-matter interactions, with resilience against various unknown changes in the occlusion shape and size. We also validate this framework experimentally in the terahertz spectrum using a 3D-printed diffractive decoder. Scalable for operation in any wavelength regime, this scheme could be particularly useful in emerging high data-rate free-space communication systems.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-