- Main
Folate Deficiency Inhibits Development of the Mammary Gland and its Associated Lymphatics in FVB Mice.
Published Web Location
https://doi.org/10.1093/jn/nxaa154Abstract
BACKGROUND: Folate is essential for DNA synthesis, DNA repair, cell proliferation, development, and morphogenesis. Folic acid (FA) is a nutritional supplement used to fortify human diets. OBJECTIVES: We investigated the effects of dietary FA on early mammary gland (MG) development and hyperplasia. METHODS: Study 1: nulliparous female FVB wild-type (WT) mice were fed control (Con; 2 mg FA/kg), deficient (Def; 0 mg FA/kg), excess (Ex; 5 mg FA/kg), or super excess (S-Ex; 20 mg FA/kg) diets for 8 wk before mating to WT or heterozygous FVB/N-Tg[mouse mammary tumor virus long terminal repeat (MMTV)-polyomavirus middle T antigen (PyVT)]634Mul/J (MMTV-PyMT+/-) transgenic males. Dams were fed these diets until they weaned WT or MMTV-PyMT+/- pups, which were fed the dams diet from postnatal day (PND) 21 to 42. Tissues were collected from female progeny at PNDs 1, 21, and 42. Study 2: Con or Def diets were fed to WT intact females and males from PND 21 to 56, or to ovariectomized females from PND 21 to 77; tissues were collected at PND 56 or 77. Growth of all offspring, development of MGs, MG hyperplasia, supramammary lymph nodes, thymus and spleen, cell proliferation, and expression of MG growth factors were measured. RESULTS: Study 1: Ex or S-Ex did not affect postnatal MG development or hyperplasia. The rate of isometric MG growth (PND 1-21) was reduced by 69% in Def female progeny (P < 0.0001). Similarly, hyperplastic growth in MGs of Def MMTV-PyMT+/- offspring was 18% of Con (P < 0.05). The Def diet reduced supramammary lymph node size by 20% (P < 0.0001) and increased MG insulin-like growth factor 2 mRNA by 200% (P < 0.05) and protein by 130%-150% (P < 0.05). Study 2: the Def diet did not affect MG growth, but it did reduce supramammary lymph node size (P < 0.05), spleen weight (P < 0.001), and thymic medulla area (P < 0.05). CONCLUSIONS: In utero and postnatal folate deficiency reduced the isometric development of the MGs and early MG hyperplasia. Postnatal folate deficiency reduced the development of lymphatic tissues.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-