Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Function of the Male-Gamete-Specific Fusion Protein HAP2 in a Seven-Sexed Ciliate

Abstract

HAP2, a male-gamete-specific protein conserved across vast evolutionary distances, has garnered considerable attention as a potential membrane fusogen required for fertilization in taxa ranging from protozoa and green algae to flowering plants and invertebrate animals [1-6]. However, its presence in Tetrahymena thermophila, a ciliated protozoan with seven sexes or mating types that bypasses the production of male gametes, raises interesting questions regarding the evolutionary origins of gamete-specific functions in sexually dimorphic species. Here we show that HAP2 is expressed in all seven mating types of T. thermophila and that fertility is only blocked when the gene is deleted from both cells of a mating pair. HAP2 deletion strains of complementary mating types can recognize one another and form pairs; however, pair stability is compromised and membrane pore formation at the nuclear exchange junction is blocked. The absence of pore formation is consistent with previous studies suggesting a role for HAP2 in gamete fusion in other systems. We propose a model in which each of the several hundred membrane pores established at the conjugation junction of mating Tetrahymena represents the equivalent of a male/female interface, and that pore formation is driven on both sides of the junction by the presence of HAP2. Such a model supports the idea that many of the disparate functions of sperm and egg were shared by the "isogametes" of early eukaryotes and became partitioned to either male or female sex cells later in evolution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View