Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

AI-Assisted Summarization of Radiologic Reports: Evaluating GPT3davinci, BARTcnn, LongT5booksum, LEDbooksum, LEDlegal, and LEDclinical.

Abstract

BACKGROUND AND PURPOSE: The review of clinical reports is an essential part of monitoring disease progression. Synthesizing multiple imaging reports is also important for clinical decisions. It is critical to aggregate information quickly and accurately. Machine learning natural language processing (NLP) models hold promise to address an unmet need for report summarization. MATERIALS AND METHODS: We evaluated NLP methods to summarize longitudinal aneurysm reports. A total of 137 clinical reports and 100 PubMed case reports were used in this study. Models were 1) compared against expert-generated summary using longitudinal imaging notes collected in our institute and 2) compared using publicly accessible PubMed case reports. Five AI models were used to summarize the clinical reports, and a sixth model, the online GPT3davinci NLP large language model (LLM), was added for the summarization of PubMed case reports. We assessed the summary quality through comparison with expert summaries using quantitative metrics and quality reviews by experts. RESULTS: In clinical summarization, BARTcnn had the best performance (BERTscore = 0.8371), followed by LongT5Booksum and LEDlegal. In the analysis using PubMed case reports, GPT3davinci demonstrated the best performance, followed by models BARTcnn and then LEDbooksum (BERTscore = 0.894, 0.872, and 0.867, respectively). CONCLUSIONS: AI NLP summarization models demonstrated great potential in summarizing longitudinal aneurysm reports, though none yet reached the level of quality for clinical usage. We found the online GPT LLM outperformed the others; however, the BARTcnn model is potentially more useful because it can be implemented on-site. Future work to improve summarization, address other types of neuroimaging reports, and develop structured reports may allow NLP models to ease clinical workflow.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View