Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Novel mutations in BRCA2 intron 11 and overexpression of COX-2 and BIRC3 mediate cellular resistance to PARP inhibitors.

Abstract

Several poly(ADP ribose) polymerase (PARP) inhibitors (PARPi) have been approved for cancer therapy; however, intrinsic and acquired resistance has limited their efficacy in the clinic. In fact, cancer cells have developed multiple mechanisms to overcome PARPi cytotoxicity in even a single cancer cell. In this study, we generated three PARPi-resistant BRCA2-deficient pancreatic Capan-1 variant cells using olaparib (Capan-1/OP), talazoparib (Capan-1/TP), and simmiparib (Capan-1/SP). We identified novel mutations in intron 11 of BRCA2, which resulted in the expression of truncated BRCA2 splice isoforms. Functional studies revealed that only a fraction (32-49%) of PARPi sensitivity could be rescued by depletion of BRCA2 isoforms. In addition, the apoptosis signals (phosphatidylserine eversion, caspase 3/7/8/9 activation, and mitochondrial membrane potential loss) were almost completely abrogated in all PARPi-resistant variants. Consistently, overexpression of the anti-apoptotic proteins cyclooxygenase 2 (COX-2) and baculoviral IAP repeat-containing 3 (BIRC3) occurred in these variants. Depletion of COX-2 or BIRC3 significantly reduced apoptotic resistance in the PARPi-resistant sublines and reversed PARPi resistance by up to 70-72%. Furthermore, exogenous addition of prostaglandin E2, a major metabolic product of COX-2, inhibited PARPi-induced apoptotic signals; however, when combined with the BIRC3 inhibitor LCL161, there was significantly enhanced sensitivity of the resistant variants to PARPi. Finally, PARPi treatment or PARP1 depletion led to a marked increase in the mRNA and protein levels of COX-2 and BIRC3, indicating that PARP1 is a negative transcriptional regulator of these proteins. Together, our findings demonstrated that during the chronic treatment of cells with a PARPi, both BRCA2 intron 11 mutations and COX-2/BIRC3-mediated apoptotic resistance led to PARPi resistance in pancreatic Capan-1 cells.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View