Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Brain network modularity predicts cognitive training-related gains in young adults

Abstract

The brain operates via networked activity in separable groups of regions called modules. The quantification of modularity compares the number of connections within and between modules, with high modularity indicating greater segregation, or dense connections within sub-networks and sparse connections between sub-networks. Previous work has demonstrated that baseline brain network modularity predicts executive function outcomes in older adults and patients with traumatic brain injury after cognitive and exercise interventions. In healthy young adults, however, the functional significance of brain modularity in predicting training-related cognitive improvements is not fully understood. Here, we quantified brain network modularity in young adults who underwent cognitive training with casual video games that engaged working memory and reasoning processes. Network modularity assessed at baseline was positively correlated with training-related improvements on untrained tasks. The relationship between baseline modularity and training gain was especially evident in initially lower performing individuals and was not present in a group of control participants that did not show training-related gains. These results suggest that a more modular brain network organization may allow for greater training responsiveness. On a broader scale, these findings suggest that, particularly in low-performing individuals, global network properties can capture aspects of brain function that are important in understanding individual differences in learning.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View