Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Soil and climate contribute to maintenance of a flower color polymorphism

Published Web Location

https://bsapubs.onlinelibrary.wiley.com/doi/full/10.1002/ajb2.70018
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

PREMISE: Floral pigments such as anthocyanins are well known to influence pollinator attraction, yet they also confer tolerance to abiotic stressors such as harsh soils, extreme temperatures, low precipitation, and UV radiation. In such cases, environmental variation in abiotic stressors over space or time could lead to the maintenance of flower color variation within species. Under this scenario, flower color in natural populations should covary with environmental stressors. METHODS: Using a comparative approach, we tested whether abiotic variables predict flower color in Leptosiphon parviflorus, a species with pink and white flower color morphs. We conducted in-depth field studies to assess morph frequency, soil chemistry, and climate. We then employed community scientist-powered iNaturalist observations to examine patterns across even larger spatial scales. RESULTS: Across 21 field sites, L. parviflorus had a higher frequency of pink morphs in sites with serpentine soil, higher average annual temperatures, and higher average climatic water deficit (a proxy for drought stress). iNaturalist observations supported this finding-the probability of flowers being pink is greater in locations with serpentine-derived soil, especially when the local average UV radiation and climatic water deficit are higher. CONCLUSIONS: Spatial variation in abiotic stressors may contribute to the maintenance of flower color variation across the geographic range of L. parviflorus. Future studies will examine mechanisms by which flower color affects stress tolerance and will assess whether fitness trade-offs in contrasting habitats across the range are associated with flower color.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item