- Main
High-Mobility Hole Transport in Single-Grain PbSe Quantum Dot Superlattice Transistors
Published Web Location
https://doi.org/10.1021/acs.nanolett.2c03657Abstract
Epitaxially-fused superlattices of colloidal quantum dots (QD epi-SLs) may exhibit electronic minibands and high-mobility charge transport, but electrical measurements of epi-SLs have been limited to large-area, polycrystalline samples in which superlattice grain boundaries and intragrain defects suppress/obscure miniband effects. Systematic measurements of charge transport in individual, highly-ordered epi-SL grains would facilitate the study of minibands in QD films. Here, we demonstrate the air-free fabrication of microscale field-effect transistors (μ-FETs) with channels consisting of single PbSe QD epi-SL grains (2-7 μm channel dimensions) and analyze charge transport in these single-grain devices. The eight devices studied show p-channel or ambipolar transport with a hole mobility as high as 3.5 cm2 V-1 s-1 at 290 K and 6.5 cm2 V-1 s-1 at 170-220 K, one order of magnitude larger than that of previous QD solids. The mobility peaks at 150-220 K, but device hysteresis at higher temperatures makes the true mobility-temperature curve uncertain and evidence for miniband transport inconclusive.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-