Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Covalent Labeling Automated Data Analysis Platform for High Throughput in R (coADAPTr): A Proteome-Wide Data Analysis Platform for Covalent Labeling Experiments.

Abstract

Covalent labeling methods coupled to mass spectrometry have emerged in recent years for studying the higher order structure of proteins. Quantifying the extent of modification of proteins in multiple states (i.e., ligand free vs ligand-bound) can provide information on protein interaction sites and regions of conformational change. Though there are several software platforms that are used to quantify the extent of modification, the process can still be time-consuming, particularly for proteome-wide studies. Here, we present an open-source software for quantitation called Covalent labeling Automated Data Analysis Platform for high Throughput in R (coADAPTr). coADAPTr tackles the need for more efficient data analysis in covalent labeling mass spectrometry for techniques such as hydroxyl radical protein footprinting (HRPF). Traditional methods like Excels Power Pivot (PP) are cumbersome and time-intensive, posing challenges for large-scale analyses. coADAPTr simplifies analysis by mimicking the functions used in the previous quantitation platform using PowerPivot in Microsoft Excel but with fewer steps, offering proteome-wide insights with enhanced graphical interpretations. Several features have been added to improve the fidelity and throughput compared to those of PowerPivot. These include filters to remove any duplicate data and the use of the arithmetic mean rather than the geometric mean for quantitation of the extent of modification. Validation studies confirm coADAPTrs accuracy and efficiency while processing data up to 200 times faster than conventional methods. Its open-source design and user-friendly interface make it accessible for researchers exploring intricate biological phenomena via HRPF and other covalent labeling MS methods. coADAPTr marks a significant leap in structural proteomics, providing a versatile and efficient platform for data interpretation. Its potential to transform the field lies in its seamless handling of proteome-wide data analyses, empowering researchers with a robust tool for deciphering complex structural biology data.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View