- Main
Highly stable perovskite solar cells with 0.30 voltage deficit enabled by a multi-functional asynchronous cross-linking.
Published Web Location
https://doi.org/10.1038/s41467-024-55414-4Abstract
The primary challenge in commercializing perovskite solar cells (PSCs) mainly stems from fragile and moisture-sensitive nature of halide perovskite materials. In this study, we propose an asynchronous cross-linking strategy. A multifunctional cross-linking initiator, divinyl sulfone (DVS), is firstly pre-embedded into perovskite precursor solutions. DVS, also as a special co-solvent, facilitates intermediate-dominated perovskite crystallization manipulation, favouring formamidine-DVS based solvate transition. Subsequently, DVS-embedded perovskite as-cast films are post-treated with a nucleophilic reagent, glycerinum, to trigger controllably three-dimensional co-polymerization. The resulting cross-linking scaffold provides enhanced water-resistance, releases residual tensile strain, and suppresses deep-level defects. We achieve a maximum efficiency over 25% (certified 24.6%) and a maximum VOC of 1.229 V, corresponding to mere 0.30 V deficit, reaching 97.5% of the theoretical limit, which is the highest reported in all perovskite systems. This strategy is generally applicable with enhanced efficiencies approaching 26%. All-around protection significantly improves PSCs operational longevity and thermal endurance.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-