- Main
C. elegans LIN-66 mediates EIF-3/eIF3-dependent protein translation via a cold-shock domain.
Abstract
Protein translation initiation is a conserved process involving many proteins acting in concert. The 13 subunit eukaryotic initiation factor 3 (eIF3) complex is essential for assembly of the pre-initiation complex that scans mRNA and positions ribosome at the initiation codon. We previously reported that a gain-of-function (gf) mutation affecting the G subunit of the Caenorhabditis elegans eIF3 complex, eif-3.g(gf), selectively modulates protein translation in the ventral cord cholinergic motor neurons. Here, through unbiased genetic suppressor screening, we identified that the gene lin-66 mediates eif-3.g(gf)-dependent protein translation in motor neurons. LIN-66 is composed largely of low-complexity amino acid sequences with unknown functional domains. We combined bioinformatics analysis with in vivo functional dissection and identified a cold-shock domain in LIN-66 critical for its function. In cholinergic motor neurons, LIN-66 shows a close association with EIF-3.G in the cytoplasm. The low-complexity amino acid sequences of LIN-66 modulate its subcellular pattern. As cold-shock domains function broadly in RNA regulation, we propose that LIN-66 mediates stimulus-dependent protein translation by facilitating the interaction of mRNAs with EIF-3.G.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-