Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Sulfate residuals on Ru catalysts switch CO2 reduction from methanation to reverse water-gas shift reaction.

Abstract

Efficient heterogeneous catalyst design primarily focuses on engineering the active sites or supports, often neglecting the impact of trace impurities on catalytic performance. Herein, we demonstrate that even trace amounts of sulfate (SO42-) residuals on Ru/TiO2 can totally change the CO2 reduction from methanation to reverse-water gas shift (RWGS) reaction under atmospheric pressure. We reveal that air annealing causes the trace amount of SO42- to migrate from TiO2 to Ru/TiO2 interface, leading to the significant changes in product selectivity from CH4 to CO. Detailed characterizations and DFT calculations show that the sulfate at Ru/TiO2 interface notably enhances the H transfer from Ru particles to the TiO2 support, weakening the CO intermediate activation on Ru particles and inhibiting the further hydrogenation of CO to CH4. This discovery highlights the vital role of trace impurities in CO2 hydrogenation reaction, and also provides broad implications for the design and development of more efficient and selective heterogeneous catalysts.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View