Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Symmetric Functions and Generating Functions for Descents and Major Indices in Compositions

Abstract

In [18], Mendes and Remmel showed how Gessel’s generating function for the distributions of the number of descents, the major index, and the number of inversions of permutations in the symmetric group could be derived by applying a ring homomorphism defined on the ring of symmetric functions to a simple symmetric function identity. We show how similar methods may be used to prove analogues of that generating function for compositions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View