Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Methods for detecting probable COVID-19 cases from large-scale survey data also reveal probable sex differences in symptom profiles

Abstract

Background

Daily symptom reporting collected via web-based symptom survey tools holds the potential to improve disease monitoring. Such screening tools might be able to not only discriminate between states of acute illness and non-illness, but also make use of additional demographic information so as to identify how illnesses may differ across groups, such as biological sex. These capabilities may play an important role in the context of future disease outbreaks.

Objective

Use data collected via a daily web-based symptom survey tool to develop a Bayesian model that could differentiate between COVID-19 and other illnesses and refine this model to identify illness profiles that differ by biological sex.

Methods

We used daily symptom profiles to plot symptom progressions for COVID-19, influenza (flu), and the common cold. We then built a Bayesian network to discriminate between these three illnesses based on daily symptom reports. We further separated out the COVID-19 cohort into self-reported female and male subgroups to observe any differences in symptoms relating to sex. We identified key symptoms that contributed to a COVID-19 prediction in both males and females using a logistic regression model.

Results

Although the Bayesian model performed only moderately well in identifying a COVID-19 diagnosis (71.6% true positive rate), the model showed promise in being able to differentiate between COVID-19, flu, and the common cold, as well as periods of acute illness vs. non-illness. Additionally, COVID-19 symptoms differed between the biological sexes; specifically, fever was a more important symptom in identifying subsequent COVID-19 infection among males than among females.

Conclusion

Web-based symptom survey tools hold promise as tools to identify illness and may help with coordinated disease outbreak responses. Incorporating demographic factors such as biological sex into predictive models may elucidate important differences in symptom profiles that hold implications for disease detection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View