- Main
Learned lensless 3D camera.
Published Web Location
https://doi.org/10.1364/OE.465933Abstract
Single-shot three-dimensional (3D) imaging with compact device footprint, high imaging quality, and fast processing speed is challenging in computational imaging. Mask-based lensless imagers, which replace the bulky optics with customized thin optical masks, are portable and lightweight, and can recover 3D object from a snap-shot image. Existing lensless imaging typically requires extensive calibration of its point spread function and heavy computational resources to reconstruct the object. Here we overcome these challenges and demonstrate a compact and learnable lensless 3D camera for real-time photorealistic imaging. We custom designed and fabricated the optical phase mask with an optimized spatial frequency support and axial resolving ability. We developed a simple and robust physics-aware deep learning model with adversarial learning module for real-time depth-resolved photorealistic reconstructions. Our lensless imager does not require calibrating the point spread function and has the capability to resolve depth and see-through opaque obstacles to image features being blocked, enabling broad applications in computational imaging.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-