- Main
Tomographic detection of photon pairs produced from high-energy X-rays for the monitoring of radiotherapy dosing.
Published Web Location
https://doi.org/10.1038/s41551-022-00953-8Abstract
Measuring the radiation dose reaching a patients body is difficult. Here we report a technique for the tomographic reconstruction of the location of photon pairs originating from the annihilation of positron-electron pairs produced by high-energy X-rays travelling through tissue. We used Monte Carlo simulations on pre-recorded data from tissue-mimicking phantoms and from a patient with a brain tumour to show the feasibility of this imaging modality, which we named pair-production tomography, for the monitoring of radiotherapy dosing. We simulated three image-reconstruction methods, one applicable to a pencil X-ray beam scanning through a region of interest, and two applicable to the excitation of tissue volumes via broad beams (with temporal resolution sufficient to identify coincident photon pairs via filtered back projection, or with higher temporal resolution sufficient for the estimation of a photons time-of-flight). In addition to the monitoring of radiotherapy dosing, we show that image contrast resulting from pair-production tomography is highly proportional to the materials atomic number. The technique may thus also allow for element mapping and for soft-tissue differentiation.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-