Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Functional regulation of an outer retina hyporeflective band on optical coherence tomography images

Abstract

Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View