Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Genetic Mapping of Thermotolerance Differences Between Species of Saccharomyces Yeast via Genome-Wide Reciprocal Hemizygosity Analysis.

Published Web Location

https://doi.org/10.3791/59972
Abstract

A central goal of modern genetics is to understand how and why organisms in the wild differ in phenotype. To date, the field has advanced largely on the strength of linkage and association mapping methods, which trace the relationship between DNA sequence variants and phenotype across recombinant progeny from matings between individuals of a species. These approaches, although powerful, are not well suited to trait differences between reproductively isolated species. Here we describe a new method for genome-wide dissection of natural trait variation that can be readily applied to incompatible species. Our strategy, RH-seq, is a genome-wide implementation of the reciprocal hemizygote test. We harnessed it to identify the genes responsible for the striking high temperature growth of the yeast Saccharomyces cerevisiae relative to its sister species S. paradoxus. RH-seq utilizes transposon mutagenesis to create a pool of reciprocal hemizygotes, which are then tracked through a high-temperature competition via high-throughput sequencing. Our RH-seq workflow as laid out here provides a rigorous, unbiased way to dissect ancient, complex traits in the budding yeast clade, with the caveat that resource-intensive deep sequencing is needed to ensure genomic coverage for genetic mapping. As sequencing costs drop, this approach holds great promise for future use across eukaryotes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View