Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Mapping the Spatial Extent of Hypoperfusion in Chronic Thromboembolic Pulmonary Hypertension Using Multienergy CT.

Abstract

Purpose

To assess if a novel automated method to spatially delineate and quantify the extent of hypoperfusion on multienergy CT angiograms can aid the evaluation of chronic thromboembolic pulmonary hypertension (CTEPH) disease severity.

Materials and methods

Multienergy CT angiograms obtained between January 2018 and December 2020 in 51 patients with CTEPH (mean age, 47 years ± 17 [SD]; 27 women) were retrospectively compared with those in 110 controls with no imaging findings suggestive of pulmonary vascular abnormalities (mean age, 51 years ± 16; 81 women). Parenchymal iodine values were automatically isolated using deep learning lobar lung segmentations. Low iodine concentration was used to delineate areas of hypoperfusion and calculate hypoperfused lung volume (HLV). Receiver operating characteristic curves, correlations with preoperative and postoperative changes in invasive hemodynamics, and comparison with visual assessment of lobar hypoperfusion by two expert readers were evaluated.

Results

Global HLV correctly separated patients with CTEPH from controls (area under the receiver operating characteristic curve = 0.84; 10% HLV cutoff: 90% sensitivity, 72% accuracy, and 64% specificity) and correlated moderately with hemodynamic severity at time of imaging (pulmonary vascular resistance [PVR], ρ = 0.67; P < .001) and change after surgical treatment (∆PVR, ρ = -0.61; P < .001). In patients surgically classified as having segmental disease, global HLV correlated with preoperative PVR (ρ = 0.81) and postoperative ∆PVR (ρ = -0.70). Lobar HLV correlated moderately with expert reader lobar assessment (ρHLV = 0.71 for reader 1; ρHLV = 0.67 for reader 2).

Conclusion

Automated quantification of hypoperfused areas in patients with CTEPH can be performed from clinical multienergy CT examinations and may aid clinical evaluation, particularly in patients with segmental-level disease.Keywords: CT-Spectral Imaging (Multienergy), Pulmonary, Pulmonary Arteries, Embolism/Thrombosis, Chronic Thromboembolic Pulmonary Hypertension, Multienergy CT, Hypoperfusion© RSNA, 2023.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View