Skip to main content
Download PDF
- Main
Germline variants disrupting microRNAs predict long-term genitourinary toxicity after prostate cancer radiation
Published Web Location
https://doi.org/10.1016/j.radonc.2021.12.040Abstract
Background and purpose
The purpose of this study was to determine whether single nucleotide polymorphisms disrupting microRNA targets (mirSNPs) can serve as predictive biomarkers for toxicity after radiotherapy for prostate cancer and whether these may be differentially predictive depending on radiation fractionation.Materials and methods
We identified 201 men treated with two forms of definitive radiotherapy for prostate cancer at two institutions: 108 men received conventionally-fractionated radiotherapy (CF-RT) and 93 received stereotactic body radiotherapy (SBRT). Germline DNA was evaluated for the presence of functional mirSNPs. Random forest, boosted trees and elastic net models were developed to predict late grade ≥2 GU toxicity by the RTOG scale.Results
The crude incidence of late grade ≥2 GU toxicity was 16% after CF-RT and 15% after SBRT. An elastic net model based on 22 mirSNPs differentiated CF-RT patients at high risk (71.5%) versus low risk (7.5%) for toxicity, with an area under the curve (AUC) values of 0.76-0.81. An elastic net model based on 32 mirSNPs differentiated SBRT patients at high risk (64.7%) versus low risk (3.9%) for toxicity, with an area under the curve (AUC) values of 0.81-0.87. These models were specific to treatment type delivered. Prospective studies are warranted to further validate these results.Conclusion
Predictive models using germline mirSNPs have high accuracy for predicting late grade ≥2 GU toxicity after either CF-RT or SBRT, and are unique for each treatment, suggesting that germline predictors of late radiation sensitivity are fractionation-dependent. Prospective studies are warranted to further validate these results.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%