NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking

Published Web Location

https://petsymposium.org/2018/files/papers/issue4/popets-2018-0035.pdf
No data is associated with this publication.
Abstract

Abstract: Although advertising is a popular strategy for mobile app monetization, it is often desirable to block ads in order to improve usability, performance, privacy, and security. In this paper, we propose NoMoAds to block ads served by any app on a mobile device. NoMoAds leverages the network interface as a universal vantage point: it can intercept, inspect, and block outgoing packets from all apps on a mobile device. NoMoAds extracts features from packet headers and/or payload to train machine learning classifiers for detecting ad requests. To evaluate NoMoAds, we collect and label a new dataset using both EasyList and manually created rules. We show that NoMoAds is effective: it achieves an F-score of up to 97.8% and performs well when deployed in the wild. Furthermore, NoMoAds is able to detect mobile ads that are missed by EasyList (more than one-third of ads in our dataset). We also show that NoMoAds is efficient: it performs ad classification on a per-packet basis in real-time. To the best of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads served across all apps using a machine learning approach.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item