Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Top3-Rmi1 Dissolve Rad51-Mediated D Loops by a Topoisomerase-Based Mechanism

Abstract

The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View