Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Experiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins

Published Web Location

https://doi.org/10.1021/jp407154h
Abstract

Structure determination by solid-state NMR of proteins is rapidly advancing as a result of recent developments of samples, experimental methods, and calculations. There are a number of different solid-state NMR approaches that utilize stationary samples, aligned samples, or magic angle spinning of unoriented "powder" samples, and depending on the sample and the experimental method they can emphasize the measurement of distances or angles, ideally both, as sources of structural constraints. Multidimensional correlation spectroscopy of low-gamma nuclei such as (15)N and (13)C is an important step for making resonance assignments and measurements of angular restraints in membrane proteins. However, the efficiency of coherence transfer predominantly depends upon the strength of the dipole-dipole interaction, and this can vary from site to site and between sample alignments, for example, during the mixing of (13)C and (15)N magnetization in stationary aligned and in magic angle spinning samples. Here, we demonstrate that the efficiency of polarization transfer can be improved by using adiabatic demagnetization and remagnetization techniques on stationary aligned samples, and proton assisted insensitive nuclei cross-polarization in magic angle sample spinning samples. The adiabatic cross-polarization technique provides an alternative mechanism for spin-diffusion experiments correlating (15)N/(15)N and (15)N/(13)C chemical shifts over large distances. Improved efficiency in cross-polarization with 40-100% sensitivity enhancements is observed in proteins and single crystals, respectively. We describe solid-state NMR experimental techniques that are optimal for membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. The techniques are illustrated with data from single crystals both of peptides and of membrane proteins in phospholipid bilayers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View