Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine learning-driven identification of novel patient factors for prediction of major complications after posterior cervical spinal fusion

Abstract

Purpose

Posterior cervical fusion is associated with increased rates of complications and readmission when compared to anterior fusion. Machine learning (ML) models for risk stratification of patients undergoing posterior cervical fusion remain limited. We aim to develop a novel ensemble ML algorithm for prediction of major perioperative complications and readmission after posterior cervical fusion and identify factors important to model performance.

Methods

This is a retrospective cohort study of adults who underwent posterior cervical fusion at non-federal California hospitals between 2015 and 2017. The primary outcome was readmission or major complication. We developed an ensemble model predicting complication risk using an automated ML framework. We compared performance with standard ML models and logistic regression (LR), ranking contribution of included variables to model performance.

Results

Of the included 6822 patients, 18.8% suffered a major complication or readmission. The ensemble model demonstrated slightly superior predictive performance compared to LR and standard ML models. The most important features to performance include sex, malignancy, pneumonia, stroke, and teaching hospital status. Seven of the ten most important features for the ensemble model were markedly less important for LR.

Conclusion

We report an ensemble ML model for prediction of major complications and readmission after posterior cervical fusion with a modest risk prediction advantage compared to LR and benchmark ML models. Notably, the features most important to the ensemble are markedly different from those for LR, suggesting that advanced ML methods may identify novel prognostic factors for adverse outcomes after posterior cervical fusion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View